Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 910: 174451, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34454928

RESUMO

Intramyocellular lipid (IMCL) accumulation in skeletal muscle is closely associated with development of insulin resistance. In particular, diacylglycerol and ceramide are currently considered as causal bioactive lipids for impaired insulin action. Recently, inhibition of acetyl-CoA carboxylase 2 (ACC2), which negatively modulates mitochondrial fatty acid oxidation, has been shown to reduce total IMCL content and improve whole-body insulin resistance. This study aimed to investigate whether ACC2 inhibition-induced compositional changes in bioactive lipids, especially diacylglycerol and ceramide, within skeletal muscle contribute to the improved insulin resistance. In skeletal muscle of normal rats, treatment of the ACC2 inhibitor compound 2e significantly decreased both diacylglycerol and ceramide levels while having no significant impact on other lipid metabolite levels. In skeletal muscle of Zucker diabetic fatty (ZDF) rats, which exhibited greater lipid accumulation than that of normal rats, compound 2e significantly decreased diacylglycerol and ceramide levels corresponding to reduced long chain acyl-CoA pools. Additionally, in the lipid metabolomics study, ZDF rats treated with compound 2e also showed improved diabetes-related metabolic disturbance, as reflected by delayed hyperinsulinemia as well as upregulated gene expression associated with diabetic conditions in skeletal muscle. These metabolic improvements were strongly correlated with the bioactive lipid reductions. Furthermore, long-term treatment of compound 2e markedly improved whole-body insulin resistance, attenuated hyperglycemia and delayed insulin secretion defect even at severe diabetic conditions. These findings suggest that ACC2 inhibition decreases diacylglycerol and ceramide accumulation within skeletal muscle by enhancing acyl-CoA breakdown, leading to attenuation of lipid-induced insulin resistance and subsequent diabetes progression.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Alcenos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores Enzimáticos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Músculo Esquelético/metabolismo , Acetilcoenzima A/efeitos dos fármacos , Acetilcoenzima A/metabolismo , Alcenos/farmacocinética , Alcenos/uso terapêutico , Animais , Ceramidas/metabolismo , Correlação de Dados , Diglicerídeos/metabolismo , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Resistência à Insulina , Lipídeos/análise , Masculino , Oxirredução/efeitos dos fármacos , Ratos Sprague-Dawley , Ratos Zucker , Triglicerídeos/metabolismo
2.
J Pharmacol Exp Ther ; 372(3): 256-263, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900320

RESUMO

Excess intramyocellular lipid (IMCL) deposition in skeletal muscle is closely associated with insulin resistance. Pharmacological inhibition of acetyl-CoA carboxylase (ACC) 2 offers a promising approach to treat insulin resistance through stimulation of mitochondrial fatty acid oxidation (FAO) and reduction of IMCL deposition. Previously reported experimental ACC2 inhibitors exhibited plasma glucose-lowering effects in diabetic rodents. However, their antidiabetic action may be potentially biased by off-target effects on triglyceride metabolism or by neurologic side effects. In this study, we investigated a safety profile, target dependency of its action, and antidiabetic efficacy of compound 2e, a novel olefin derivative potent ACC2 selective inhibitor. Four-day administration of suprapharmacological dose of compound 2e did not exhibit any obvious side effects in Sprague-Dawley rats. In db/db mice, single administration of compound 2e led to significantly elevated FAO and reduced IMCL deposition in skeletal muscle. In ACC2 knockout mice, treatment with pharmacological doses of compound 2e did not reduce plasma triglyceride levels, whereas A-908292, a previously reported ACC2 inhibitor, caused a significant triglyceride reduction, showing that compound 2e was devoid of off-target triglyceride-lowering activity. Chronic treatment of db/db mice with compound 2e improved hyperglycemia but did not decrease plasma triglyceride levels. Additionally, compound 2e showed significant improvements of whole-body insulin resistance in the clamp study and insulin tolerance test. Collectively, compound 2e demonstrated a good safety profile and significant antidiabetic effects through inhibition of ACC2-dependent pathways. These findings provide further evidence that selective inhibition of ACC2 is an attractive strategy against insulin resistance and type 2 diabetes. SIGNIFICANCE STATEMENT: This study shows that pharmacological inhibition of acetyl-CoA carboxylase (ACC) 2 leads to significant improvements in whole-body glucose homeostasis, independently of off-target metabolic pathways and toxicity, which were observed in previously reported ACC2 inhibitors. These findings support the concept that ACC2-selective inhibitors will be a novel remedy for treatment of type 2 diabetes.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Acetil-CoA Carboxilase/genética , Animais , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/toxicidade , Insulina/metabolismo , Camundongos Knockout , Músculo Esquelético/enzimologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Ratos Sprague-Dawley , Testes de Toxicidade , Triglicerídeos/sangue
3.
J Biol Chem ; 293(26): 10333-10343, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29764933

RESUMO

Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator-responsive elements (PPREs) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of >12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia.


Assuntos
Regulação da Expressão Gênica , PPAR alfa/genética , PPAR alfa/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Frutose/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Humanos , Hipolipemiantes/farmacologia , Ligantes , Ratos
4.
Am J Physiol Endocrinol Metab ; 312(4): E264-E272, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143857

RESUMO

Hyperinsulinemia is widely thought to be a compensatory response to insulin resistance, whereas its potentially causal role in the progression of insulin resistance remains to be established. Here, we aimed to examine whether hyperinsulinemia could affect the progression of insulin resistance in Zucker fatty diabetic (ZDF) rats. Male ZDF rats at 8 wk of age were fed a diet ad libitum (AL) or dietary restriction (DR) of either 15 or 30% from AL feeding over 6 wk. Insulin sensitivity was determined by hyperinsulinemic euglycemic clamp. ZDF rats in the AL group progressively developed hyperglycemia and hyperinsulinemia by 10 wk of age, and then plasma insulin rapidly declined to nearly normal levels by 12 wk of age. Compared with AL group, DR groups showed delayed onset of hyperglycemia and persistent hyperinsulinemia, leading to weight gain and raised plasma triglycerides and free fatty acids by 14 wk of age. Notably, insulin sensitivity was significantly reduced in the DR group rather than the AL group and inversely correlated with plasma levels of insulin and triglyceride but not glucose. Moreover, enhanced lipid deposition and upregulation of genes involved in lipogenesis were detected in liver, skeletal muscle, and adipose tissues of the DR group rather than the AL group. Alternatively, continuous hyperinsulinemia induced by insulin pellet implantation produced a decrease in insulin sensitivity in ZDF rats. These results suggest that chronic hyperinsulinemia may lead to the progression of insulin resistance under DR conditions in association with altered lipid metabolism in peripheral tissues in ZDF rats.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Hiperinsulinismo/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Técnica Clamp de Glucose , Insulina/sangue , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Ratos , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...